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Abstract
We introduce a new approach to analyse the global structure of electronic
states in quasi-1D models in terms of the dynamics of a system of parametric
oscillators with time-dependent stochastic couplings. We thus extend to quasi-
1D models the method previously applied to 1D disordered models. Using
this approach, we show that a ‘delocalization transition’ can occur in quasi-1D
models with weak disorder with long-range correlations.

PACS numbers: 73.20.Jc, 72.15.Rn, 05.40.−a

1. Introduction

In recent years there has been a steadily increasing interest in disordered models with long-
range correlated disorder. The interest was initially spurred by the discovery that specific long-
range correlations can produce a kind of ‘delocalization transition’ even in one-dimensional
(1D) models in which the electronic states are typically exponentially localized [1]. The first
numerical results were later confirmed by analytical studies, which identified the relationship
existing between localization length and pair correlators of the random potential and showed
how to create mobility edges in strictly 1D discrete models [2]. These analytical predictions
were experimentally verified by considering the transmission of microwaves in a single-mode
waveguide with a random array of correlated scatterers [3]. Later on, the results obtained
for discrete lattices [2] were extended to 1D continuous models [4] and applied to related
problems such as the propagation of waves in waveguides with random surface scattering and
to specific quasi-1D models with bulk scattering [4–6].

An important tool for the analysis of such models is represented by transfer matrix
techniques (for a review, see [7]). A related method, which turned out to be very effective,
is that based on the analogy between localization phenomena in disordered systems and the
dynamics of stochastic oscillators [8, 9]. This dynamical approach was originally applied
to strictly 1D models; subsequent research, however, has begun to explore models of higher
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dimensionality, with quasi-1D models providing the first natural extension towards realistic
disordered systems. A rigorous mathematical treatment of discrete quasi-1D models was
given in [10], but the analysis was centred on disorder without spatial correlations. Quasi-1D
models with short-range correlated disorder were studied in [11], where the extension of the
random dimer model to the quasi-1D case was considered.

This paper serves two main purposes: in the first place, we extend to systems of higher
dimensionality the dynamical approach which was used successfully for strictly 1D continuous
models (see, e.g., [12] and references therein). We show that the Lyapunov exponents which
govern the exponential divergence of initially nearby trajectories in a classical systems of
stochastic oscillators are the same exponents which appear in the transfer-matrix approach for
quasi-1D disordered models. This allows us to establish a rigorous correspondence between the
quantum phenomenon of localization in quasi-1D disordered models and the orbit instability
in classical systems of parametric oscillators with noisy couplings.

The second objective of this work is to use this analogy to study the effects of long-range
correlations of the disorder on the localization of the electronic states in quasi-1D models.
Our main result is that, for weak disorder, specific long-range correlations can make all
Lyapunov exponents vanish (within the second-order approximation), thereby suppressing the
orbit instability on the one hand and producing a ‘delocalization transition’ on the other.

The paper is organized as follows. In section 2 we discuss the correspondence of quasi-1D
disordered models with a set of coupled parametric oscillators. In section 3 we show how
the evolution of this dynamical system can be analysed. The general results thus obtained
are then applied in section 4 to the specific case in which the random potential depends only
on the longitudinal coordinate. In section 5 we apply the dynamical approach to the case of
a generic weak disorder. We determine an expression for the sum of the positive Lyapunov
exponents of the quasi-1D model and we use this result to discuss the delocalization effects
that are produced by specific long-range correlations of the random potential. The conclusions
are then outlined in section 6.

2. Classical representation of the quasi-1D model

2.1. The 1D case

Before considering quasi-1D models, we summarize shortly the main results for the strictly
1D case. Since this work is focused on quasi-1D models, we shall be brief; the interested
reader can find more details in [8, 9, 13]. The correspondence between Anderson localization
in 1D models with weak disorder and the energetic instability of oscillators with a frequency
perturbed by a noise is a straightforward consequence of the mathematical analogy between
the Schrödinger equation

−ψ ′′(x) + U(x)ψ(x) = Eψ(x), (1)

with the positive energy E and the dynamical equation of a stochastic oscillator

q̈(t) + (ω2 − U(t))q(t) = 0. (2)

(Here and in the following we will use energy units such that h̄2/2m = 1). In fact, equation (1)
can be easily transformed into equation (2) by interpreting the spatial coordinate x as the time
t and the wavefunction amplitude ψ as the coordinate of an oscillator. In the first equation the
function U plays the role of a random potential while in the second it represents a noise. The
noise is white or coloured depending on whether the disorder is spatially correlated or not.

The mathematical identity of equations (1) and (2) allows one to study the global structure
of the quantum eigenstates of the disordered model (1) by analysing the dynamics of the
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corresponding classical oscillator (2). The dynamical equation (2) gives the time evolution
of the oscillator coordinate q(t) once the initial position q(0) and velocity q̇(0) have been
specified; use of analogous boundary conditions to solve the Schrödinger equation (1) leads
to the solution ψ(x) which is obtained with the standard transfer matrix approach. Studying
the disordered model (1) in terms of the dynamics of the random oscillator (2), therefore, is
equivalent to using transfer matrix methods.

Comparing the solutions of equations (1) and (2) one finds that spatially extended
states correspond to bounded oscillator orbits, while localized states have their counterpart
in unbounded trajectories. As a consequence, the phenomenon of Anderson localization
corresponds to the energetic instability of the parametric oscillator, with the inverse localization
length being equal to the Lyapunov exponent of the stochastic oscillator, i.e., the rate of
exponential divergence for initially nearby orbits.

The case of weak noise/disorder can be studied using perturbative techniques which were
originally devised for the study of stochastic systems. These methods allow one to obtain the
rate of energy growth for the oscillator (2) and therefore the inverse localization length for
the disordered model (1) [9, 13]. The second-order expression for the inverse localization
length is

λ = 1

4ω2

∫ ∞

0
〈U(t)U(t + τ)〉 cos(2ωτ) dτ, (3)

which shows that the Lyapunov exponent is proportional to the power spectrum of the disorder,
i.e., to the cosine Fourier transform of the two-point correlator of the random potential (here
and in what follows we use the symbol 〈. . .〉 to denote the average over different disorder
realizations). This entails that the energetic instability of the oscillator (2) can be suppressed
if the unperturbed oscillator frequency, multiplied by a factor two, lies in a frequency interval
where the power spectrum of the disorder vanishes. Correspondingly, delocalized states arise
for the energy values for which the inverse localization length (3) vanishes.

2.2. The quasi-1D model

We analyse the phenomenon of electronic localization in a semi-infinite strip. The present
method can be applied to bars as well; we focus on strips to avoid unnecessary complications
in the mathematical formulae. We consider the strip D in the x − y plane

D = {(x, y) : 0 � x; 0 � y � L}. (4)

The Schrödinger equation for a quantum particle (‘electron’) in the strip is

−
(

∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) + εU(x, y)ψ(x, y) = Eψ(x, y). (5)

The function U(x, y) is the random potential felt by the electrons; the potential can exhibit
spatial correlations. The dimensionless parameter ε is introduced to keep track of the order
of perturbative expansions and can be set equal to 1 in the final formulae. We will focus on
the case of weak disorder, i.e., on the case ε � 1. For the model to be completely defined,
one must provide the statistical properties of the random potential; for weak disorder, it is
enough to specify the first two moments of U(x, y). We will assume that the potential has
zero average, 〈U(x, y)〉 = 0, and that the two-point correlator is a known function:

〈U(x1, y1)U(x2, y2)〉 = σ 2χ(x1 − x2, y1 − y2), (6)

where σ 2 represents the variance of the potential

σ 2 = 〈U(x, y)U(x, y)〉
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provided that it is finite; when the variance diverges, like in the case of white noise, σ 2 must
be interpreted as a parameter which measures the strength of the disorder. We will consider
random potentials which are translationally invariant in the mean; this is why we assume that
the binary correlator (6) depends only on the difference of the coordinates of the two points
(x1, y1) and (x2, y2).

2.3. Representation of the Schrödinger equation in the partially reciprocal space

If one wishes to extend to quasi-1D models the dynamical approach described in subsection 2.1
for the 1D case, it is quite natural to identify the longitudinal coordinate x with the time t of the
corresponding dynamical system. One can then Fourier transform the Schrödinger equation (5)
in the transversal direction y. In the following we consider the real solutions of the stationary
Schrödinger equation (5); this choice is not restrictive because one can find a complete set of
real eigenfunctions of the Hamiltonian. It is possible to expand any real function of y defined
over the interval [0 : L] in a cosine basis. In this way one avoids dealing with complex Fourier
components, which makes easier the successive identification of the Fourier components with
oscillator coordinates discussed below. Expanding the wavefunction and the potential one
obtains

ψ(x, y) = ψ̃0(x) + 2
∞∑

n=1

ψ̃n(x) cos
(πny

L

)
=

∞∑
n=−∞

ψ̃n(x) cos
(πny

L

)
(7)

U(x, y) = Ũ0(x) + 2
∞∑

n=1

Ũn(x) cos
(πny

L

)
=

∞∑
n=−∞

Ũn(x) cos
(πny

L

)
, (8)

where the Fourier components of the expansions are defined by

ψ̃n(x) = 1

L

∫ L

0
dy ψ(x, y) cos

(πny

L

)
(9)

and

Ũn(x) = 1

L

∫ L

0
dy U(x, y) cos

(πny

L

)
. (10)

In the following we will often refer to the Fourier components of the wavefunctions as Fourier
modes or channels. Note that the Fourier components with opposite values of the index n
are identical: ψ̃n(x) = ψ̃−n(x) and Ũn(x) = Ũ−n(x). The functions defined by the Fourier
cosine expansions (7) and (8) coincide with the original functions in the domain (4); outside
of this domain, they are symmetric and 2L-periodic functions of the transversal coordinate y,
i.e.,

ψ(x, y) = ψ(x,−y) and ψ(x, y) = ψ(x, y + 2L).

The same relations also hold for U(x, y). Expanding in a cosine series, therefore, is
equivalent to considering y-symmetric functions ψ(x, y) and U(x, y) on the doubled strip
[0 : ∞] × [−L : L] and impose periodic boundary conditions along the transversal direction
(i.e., to roll the doubled strip into a cylinder). Our choice of periodic boundary conditions is,
in fact, due to some mathematical simplifications. As is typically assumed in the literature,
in the case of large number of channels the global properties of transport, determined by the
localization length of eigenstates, are insensitive to the type of boundary conditions.
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Note that by identifying the wavefunction ψ(x, y) with its Fourier expansion (7) we are
neglecting the isolated points where the identity (7) may not hold. Under this assumption, by
differentiating twice with respect to y both sides of equation (7), one obtains the expression

∂2ψ

∂y2
= −

∞∑
n=−∞

(πn

L

)2
ψ̃n(x) cos

(πny

L

)
.

Using this relation and the fact that the Fourier transform of a product can be written in
the form of a convolution of the Fourier components, one can write equation (5) in Fourier
representation as

∂2ψ̃n

∂x2
(x) +

[
E −

(πn

L

)2
]

ψ̃n(x) =
∞∑

k=−∞
εŨn−k(x)ψ̃k(x). (11)

2.4. Elliptic and hyperbolic Fourier components

Before giving a dynamical interpretation for equation (11), it is useful to introduce a distinction
between ‘elliptic’ and ‘hyperbolic’ Fourier components of the wavefunction. Adopting the
terminology of [10], we define the Fourier component ψ̃n(y) with wave number n to be

elliptic if E −
(πn

L

)2
> 0

hyperbolic if E −
(πn

L

)2
< 0

(we ignore the marginal case of the ‘parabolic’ components with E = (πn/L)2).
The crucial difference between elliptic and hyperbolic components is that the latter decay

exponentially in the longitudinal direction: from a physical point of view, they are evanescent
modes (or closed channels). Hence they can be neglected for large values of the longitudinal
coordinate x. The irrelevance of the hyperbolic modes can be justified also with a different
argument. As can be seen from the Fourier expansion (7), the Fourier components with large
values of n describe the behaviour of the wavefunction on small spatial scales

δy ∼ L

n

in the transversal direction. If we suppose that our continuous model has an underlying lattice
structure, however, we need not consider the behaviour of the wavefunction over spatial scales
δy � a, where a is the lattice constant. This implies that, if the short-scale spatial structure of
the wavefunction is neglected, the only Fourier components that must be taken into account
are the ones with wavenumber

n < n ∼ L

a
. (12)

Now, let us restrict our analysis of localization to the case of high-energy electrons, where
high-energy means

E >

(
πn

L

)2

∼
(π

a

)2
. (13)

In this case, one can see that, due to the cutoff condition (12), the only Fourier components
which are relevant for the analysis are the elliptic ones. Hence, we need not bother with
hyperbolic components if we restrict our attention to the regime of sufficiently high energies.
This back-of-the-envelope criterion suggests that our approximation may fail when the electron
energy does not satisfy condition (13).
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After eliminating the hyperbolic components, the Schrödinger equation (11) takes the
form

∂2ψ̃n

∂x2
(x) +

[
E −

(πn

L

)2
]

ψ̃n(x) =
N∑

k=−N

εŨn−k(x)ψ̃k(x), (14)

where the indices n and k are restricted to the elliptic modes (or conducting channels), i.e., the
indices take the values −N,−N + 1, . . . , N − 1, N with N being the integer part [. . .] of the
ratio L

√
E/π ,

N =
[

L
√

E

π

]
.

2.5. Dynamical equations for the quasi-1D model

In order to give a dynamical interpretation of the Schrödinger equation (14) we replace the
longitudinal variable x with a time variable t. In addition, we define the frequencies

ωn =
√

E −
(πn

L

)2
(15)

and we introduce the notation

qn(t) = ψ̃n(t)

for the Fourier components of the wavefunction. This allows us to write equation (14) in the
form

q̈n(t) + ω2
nqn(t) = ε

N∑
k=−N

Ũn−k(t)qk(t), (16)

which is naturally interpreted as the dynamical equation of a system of classical parametric
oscillators with time-dependent stochastic couplings. This correspondence allows one to
analyse the structure of the electronic states of the disordered model (5) in terms of the
dynamics of the system (16). In fact, the spatial behaviour of the ψ̃n(x) Fourier component
along the longitudinal direction is determined by the time evolution of the coordinate qn(t) of
the corresponding oscillator.

The system of 2N + 1 second-order differential equations (16) can be transformed into a
system of 4N + 2 first-order Hamiltonian equations by introducing the momenta pn = q̇n and
the Hamiltonian

H(p, q) =
N∑

n=−N

(
p2

n

2
+

ω2
n

2
q2

n

)
− ε

N∑
n=−N

N∑
k=−N

Ũn−k(t)qnqk. (17)

Then one can cast the dynamical system (16) in the form

ṗn = −∂H

∂qn

= −ω2
nqn + ε

N∑
k=−N

Ũn−k(t)qk

q̇n = ∂H

∂pn

= pn.

(18)

Note that these Hamiltonian equations describe a system of 2N + 1 oscillators. However,
not all oscillators are independent, because the symmetry of the Fourier components
ψ̃n(x) = ψ̃−n(x) implies that the Hamiltonian system is subject to the constraints qn = q−n
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which reduce to N + 1 the number of degrees of freedom of the system. Making use of the
constraints, the dynamical equations (18) can be written in the form

ṗn = −ω2
nqn +

N∑
k=0

εWnk(t)qk q̇n = pn, (19)

where n = 0, 1, . . . , N and only independent oscillators are involved. Note that in
equation (19) we have introduced the short-hand notation

Wn,k(t) = [Ũn+k(t) + Ũn−k(t)]
(
1 − 1

2δk0
)
. (20)

A comment is in order here. A mapping of a quasi-1D disordered model of the form (5)
unto a Hamiltonian system was made long ago by Hansel and Luciani [14, 15]. In spite of
several similarities, their approach differs from the present one in many aspects. In the first
place, in [14, 15], the quasi-1D model is morphed into a Hamiltonian system by discretizing
rather than Fourier transforming the system in the transversal directions. In our approach, no
discretization is required. This implies that the channels Hansel and Luciani deal with are
1D chains coupled linearly to each other, whereas in our scheme the channels are the Fourier
modes of the wavefunction. Because of this conceptual difference, our channels are coupled
only if the random potential is present, in contrast to what happens in the Hansel and Luciani
work. Similarly, no distinction between elliptic and hyperbolic channels arises in that case.
In the second place, the Hamiltonian model of Hansel and Luciani has no constraints, while
the system (17) is subject to the constraints qn = q−n. This entails that the coupling term (20)
is not fully symmetric in the two indices n and k, unlike the coupling matrix considered in
[14, 15].

2.6. Wavefunction localization versus oscillator instability

The mapping of equation (14) unto equation (19) makes possible to study the behaviour of
the wavefunctions of the disordered model (5) in terms of the time evolution of the dynamical
system (19). From a physical point of view, the mathematical identity of the two problems
translates into a correspondence between the phenomenon of Anderson localization in quasi-
1D disordered bars and the energetic instability of the system of random oscillators. The
connection between the two phenomena can be understood and made quantitative by observing
that the crucial properties of both classes of systems are defined in terms of their Lyapunov
exponents. In the case of quasi-1D systems, Lyapunov exponents arise within the framework
of the transfer matrix approach (see, e.g., [16] and references therein). The method divides
the strip (or the bar) in layers; a transfer matrix is an operator that relates the values of the
wavefunction and its derivative on one layer with the corresponding values on the contiguous
layer. The Schrödinger equation is considered as an initial value problem and its solution is
obtained in terms of a product of transfer matrices (in discrete models) or of spatial-ordered
exponentials (for continuous models). Making use of Oseledec’s theorem [17], one can then
define the Lyapunov exponents for the quasi-1D model in terms of the eigenvalues of the
asymptotic product of transfer matrices. As is well known, the localization length in this
approach is determined by the smallest Lyapunov exponent (see [18] and references therein).

From this point of view, quasi-1D models are similar to 1D systems of the type described
by equation (1), whose single Lyapunov exponent (i.e., the inverse of the localization length)
is identical to the Lyapunov exponent of the dynamical counterpart (2) (i.e., the rate of
exponential orbit divergence). In quasi-1D models, however, the picture is more complex than
in the strictly 1D case because there is not a single Lyapunov exponent, but a whole Lyapunov
spectrum.
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In dynamical systems, the most significative Lyapunov exponent is the largest one, because
it defines the rate of exponential divergence of initially nearby orbits along almost every
direction of the phase space of the system. Smaller Lyapunov exponents play a reduced
dynamical role, because they give the rate of exponential divergence for zero-measure sets of
initial conditions [19]. In quasi-1D models, on the other hand, the most relevant Lyapunov
exponent is the smallest one [18]. This can be seen by considering that the Lyapunov exponents
obtained in the transfer matrix approach can be interpreted as rates of exponential decay of the
wavefunction; since the spatial extension of the electronic state is determined by the smallest
decay rate, the smallest Lyapunov exponent is that which matters most.

In conclusion, quasi-1D models and their dynamical counterparts share the same Lyapunov
spectra, but the physical relevance of the single Lyapunov exponents is different for the two
classes of systems. Therefore, when the study of the dynamical system (19) is used as a mean
to extract information on the spatial behaviour of the electronic states of model (5), one needs
to push the dynamical analysis of the system (19) beyond the determination of the largest
Lyapunov exponent and to compute the whole Lyapunov spectrum. Having thus highlighted
the links between the quantum phenomenon of localization and the dynamics of a system of
parametric oscillators, we now turn our attention to the study of the latter problem.

3. Dynamics of the parametric oscillators

To analyse the dynamics of a system of oscillators, it is convenient to perform a canonical
transformation and switch from the Cartesian coordinates (qn, pn) to the action-angle variables
(Jn, θn) defined by the relations

qn =
√

2Jn

ωn

sin θn pn =
√

2ωnJn cos θn.

In terms of the new variables the Hamiltonian (17) takes the form

H =
N∑

n=−N

ωnJn −
N∑

n=−N

N∑
k=−N

εŨn−k(t)

√
JnJk

ωnωk

sin θn sin θk,

and the dynamical equations (19) become

J̇ n =
N∑

k=0

2εWn,k(t)

√
JnJk

ωnωk

sin θk cos θn

θ̇n = ωn −
N∑

k=0

εWn,k(t)

√
Jk

Jnωnωk

sin θk sin θn.

(21)

Following the general method described by Van Kampen [20], one can replace the system
of Langevin equations (21) with a deterministic Fokker–Planck equation for the probability
distribution of the stochastic variables (Jn, θn). In fact, the dynamical equations (21) are
stochastic equations of the form

u̇ = F (0)(u) + εF (1)(u, t), (22)

where F (0)(u) is a deterministic function of the vector u and εF (1)(u, t) is a stochastic
correction to the deterministic term. Following Van Kampen [20], one can associate to the
stochastic differential equation (22) an ordinary differential equation for the function P(u, t)
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which represents the probability distribution for the random variable u. The associated
differential equation has the form

∂P

∂t
(u, t) = −

∑
i

∂

∂ui

[
F

(0)
i (u)P (u, t)

]

+ ε2
∑
ij

∂

∂ui

∫ ∞

0
dτ

〈
F

(1)
i (u, t)

d(u−τ )

d(u)

∂

∂u−τ
j

F
(1)
j (u−τ , t − τ)

〉

× d(u)

d(u−τ )
P (u, t) + o(ε2), (23)

where ut is the solution at time t of the unperturbed differential equation u̇ = F (0)(u) with the
initial condition u(0) = u and d(u−τ )/d(u) is the Jacobian of the transformation u → u−τ .
Note that, within the second-order approximation, i.e., neglecting terms of order o(ε2), only
first- and second-order derivatives appear on the right-hand side (rhs) of equation (23), which
therefore has the form of a Fokker–Planck equation.

In the present case, the vectors u, F (0)(u) and F (1)(u, t) have the nth bi-component
equal to

un =
(

Jn

θn

)
, F (0)

n =
(

0
ωn

)
, F (1)

n =
(

F
(1)
n,J (J, θ)

F
(1)
n,θ (J, θ)

)
,

where we have introduced the symbols

F
(1)
n,J (J, θ) =

N∑
k=0

2Wn,k(t)

√
JnJk

ωnωk

sin θk cos θn

F
(1)
n,θ (J, θ) = −

N∑
k=0

Wn,k(t)

√
Jk

Jnωnωk

sin θk sin θn.

The unperturbed flow u → ut in this specific case has the simple form

ut
n =

(
J t

n

θ t
n

)
=
(

Jn

ωnt + θn

)

and as a consequence one has

d(u−τ )

d(u)
= d(u)

d(u−τ )
= 1 and

∂

∂u−τ
i

= ∂

∂ui

.

Using these results, the general Fokker–Planck equation (23) takes the specific form

∂P

∂t
(J, θ, t) = −

N∑
n=0

ωn

∂P

∂θn

(J, θ, t)

+ ε2
N∑

n=0

N∑
k=0

∂

∂Jn

∫ ∞

0
dτ

〈
F

(1)
n,J (J, θ, t)

∂

∂Jk

F
(1)
k,J (J, θ − ωτ, t − τ)

〉
P(J, θ, t)

+ ε2
N∑

n=0

N∑
k=0

∂

∂Jn

∫ ∞

0
dτ

〈
F

(1)
n,J (J, θ, t)

∂

∂θk

F
(1)
k,θ (J, θ − ωτ, t − τ)

〉
P(J, θ, t)
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+ ε2
N∑

n=0

N∑
k=0

∂

∂θn

∫ ∞

0
dτ

〈
F

(1)
n,θ (J, θ, t)

∂

∂Jk

F
(1)
k,J (J, θ − ωτ, t − τ)

〉
P(J, θ, t)

+ ε2
N∑

n=0

N∑
k=0

∂

∂θn

∫ ∞

0
dτ

〈
F

(1)
n,θ (J, θ, t)

∂

∂θk

F
(1)
k,θ (J, θ − ωτ, t − τ)

〉
P(J, θ, t).

(24)

Rather than trying to obtain the general solution of equation (24)—an exceedingly difficult
task—we aim at deriving the reduced probability distribution for the action variables

P(J, t) =
∫ ∏

n

dθn P (J, θ, t).

Since the frequencies ωn are different from zero, a glance at the dynamical equations (21)
shows that the angular variables are ‘fast’ in comparison with the ‘slow’ action variables.
We can therefore assume that, after a sufficiently long time, the angle variables become
uncorrelated random variables with a uniform distribution in the [0 : 2π ] interval, i.e., that for
large times the distribution P(J, θ, t) reduces to the factorized form

P(J, θ, t) 	 1

(2π)N+1
P(J, t). (25)

Substituting the distribution (25) in the Fokker–Planck equation (24) and integrating over the
angular variables, one obtains, after some algebra, the reduced Fokker–Planck equation

∂P

∂t
(J, t) =

N∑
n=0

N∑
k=0

1

2

∂

∂Jn

[
Dnk(J )

∂P

∂Jk

(J, t)

]
, (26)

where the diffusion matrix Dnk(J ) has diagonal elements defined as

Dnn(J ) =
(

εJn

ωn

)2 ∫ ∞

0
dτ 〈Wnn(t)Wnn(t − τ)〉 cos 2ωnτ

+
∑
k 
=n

ε2JnJk

ωnωk

∫ ∞

0
dτ 〈Wnk(t)Wnk(t − τ)〉[cos(ωn + ωk)τ + cos(ωn − ωk)τ ]

(27)

and off-diagonal elements (n 
= k) equal to

Dnk(J ) = ε2JnJk

ωnωk

∫ ∞

0
dτ 〈Wnk(t)Wkn(t − τ)〉[cos(ωn + ωk)τ − cos(ωn − ωk)τ ]. (28)

The Fokker–Planck equation (26) is a rather general result, because it has been obtained
for a generic random potential, with the only assumption that the disorder should be weak
and translationally invariant in the mean. We note that only second-order derivatives appear
in the diffusion equation (26), and that the coefficients of its rhs are completely determined
by the two-point correlator of the random potential. Both facts are consequences of the decision
to study the problem within the framework of the second-order approximation. Pushing the
perturbative approach to higher orders, in fact, would make higher order derivatives appear
in the diffusion equation, together with coefficients which would depend on higher order
moments of the potential. It may be appropriate to stress that, if in the present work the
statistical properties of disorder are defined only up to the binary correlator, this is not due to
any Gaussian assumption but is only a consequence of the adopted second-order perturbative
scheme, which makes unnecessary to specify the statistical features of the random potential
beyond the second moments.
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Using the Fokker–Planck equation (26) for the reduced probability density P(J, t) allows
one to obtain the dynamical equation for the averaged action variables

Jn =
∫

dJ0 · · · dJNJnP (J0, . . . , JN , t).

In fact, differentiating with respect to time both members of the previous equation and using
equation (26) to express the time derivative of P(J, t), one arrives at the matrix equation

d

dt




J0
...

JN


 = M




J0
...

JN


 , (29)

where M is a (N + 1) × (N + 1) matrix with diagonal elements

Mnn = ε2

ω2
n

∫ ∞

0
dτ 〈Wnn(t)Wnn(t − τ)〉 cos 2ωnτ

+
∑
k 
=n

ε2

2ωnωk

∫ ∞

0
dτ 〈Wnk(t)Wkn(t − τ)〉[cos(ωn + ωk)τ − cos(ωn − ωk)τ ]

and off-diagonal elements (n 
= k)

Mnk = ε2

2ωnωk

∫ ∞

0
dτ 〈Wnk(t)Wnk(t − τ)〉[cos(ωn + ωk)τ + cos(ωn − ωk)τ ].

An important consequence of equation (29) is that, except in very special cases (discussed
in section 4), the exponential rate of energy growth is the same for all oscillators. In fact, every
action variable increases exponentially in time with a rate given by the largest eigenvalue of
the M matrix.

4. Longitudinal disorder

As a first application of the previous results, we can consider the special case in which the
random potential depends only on the longitudinal coordinate, i.e., U(x, y) = U(x). We will
refer to this case as ‘longitudinal disorder’. This form of random potential has been considered
in a different context, i.e., that of many-mode waveguides with a rough surface, where it has
been christened as ‘stratified disorder’ [21]. Here we recover the results of that paper using
our more general formalism.

In the special case in which U depends only on the longitudinal coordinate x, the matrix
elements (20) take the simple form

Wnk = U(t)δnk. (30)

Substituting this expression in equations (27) and (28), one obtains that the diffusion matrix
becomes

Dnk(J ) = 4λnJ
2
n δnk,

where we have introduced the symbols

λn = ε2

4ω2
n

∫ ∞

0
dτ 〈U(t)U(t + τ)〉 cos 2ωnτ. (31)

As a consequence, the Fokker–Planck equation (26) reduces to

∂P

∂t
(J, t) =

N∑
n=0

2λn

∂

∂Jn

[
J 2

n

∂P

∂Jn

(J, t)

]
.
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The solution of this Fokker–Planck equation corresponding to the initial distribution

P(J, t = 0) =
N∏

n=0

δ(Jn − Jn(0))

is a product of log-normal distributions

P(J, t) =
N∏

n=0

1√
8πλnt

exp

{
− [log(Jn/Jn(0)) − 4λnt]2

8λnt

}
. (32)

Using expression (30) one can also compute the matrix elements of the M matrix which
determines, via equation (29), the time evolution of the averaged action variables. In the case
of longitudinal disorder the M matrix takes the simple diagonal form

Mnk = 4λnδnk.

Both this result and the factorized distribution (32) imply that, in the case of longitudinal
disorder, the parametric oscillators are decoupled. The result could have been obtained
a priori by noting that if the random potential depends only on the longitudinal coordinate,
Fourier transforming the Schrödinger equation (5) gives a system of independent equations for
the Fourier components. Thus, the quasi-1D model (5) is effectively decomposed into N + 1
strictly 1D systems, in agreement with the results of [21].

Besides being independent, the oscillators are also energetically unstable; in fact, solving
equation (29) one obtains

Jn = e4λntJn(0).

The coefficients 4λn are therefore the mean rates of the exponential growth of the energies
of the oscillators (since the energy of the nth oscillator is proportional to the corresponding
action variable, En = ωnJn). Taking into account that the rate of exponential increase of the
energy is four times the rate of exponential orbit divergence [9], we are led to the conclusion
that the coefficients (31) represent the Lyapunov spectrum of the dynamical system (19) and,
consequently, of the quasi-1D model (5). The localization length, therefore, is the equal to
the inverse of the minimum Lyapunov exponent. Which of the Lyapunov exponents (31) is
the smallest depends on the specific form of the Fourier transform of the binary correlator
〈U(t)U(t + τ)〉 = σ 2χ(τ).

In the case of δ-correlated disorder, the Fourier transform of χ(τ) = δ(τ ) is simply the
unity, χ̃ (ω) = 1, and the smallest Lyapunov exponent corresponds to the oscillator with largest
unperturbed frequency, i.e., the oscillator with n = 0. Hence the inverse of the localization
length is

l−1 = λ0 = ε2σ 2

8ω2
0

= ε2σ 2

8E
.

When the binary correlation function is not a delta, however, the smallest Lyapunov
exponent is not determined only by the largest frequency, but also by the behaviour of the
power spectrum of the random potential:

χ̃ (ω) =
∫ ∞

−∞
χ(τ) cos ωτ dτ = 1

σ 2

∫ ∞

−∞
〈U(t + τ)U(t)〉 cos ωτ dτ. (33)

An important consequence is that the system can go through a delocalization transition
if long-range correlations of the disorder make the Fourier transform of two-point
correlator (33) vanish in a specific frequency interval. This phenomenon has already been
analysed for 1D systems [2, 9, 13] and for quasi-1D waveguides with stratified disorder [21].
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The main point is that, given a Lyapunov exponent λn(ω) with any specific dependence
on the frequency ω, it is possible to find a random potential U(t) that generates the pre-defined
function λn(ω). Specifically, if the Lyapunov exponent λn(ω) is known, then the power
spectrum χ̃(ω) = 8ω2λn(ω)/σ 2 is also defined. One can then determine a function β(t)

whose Fourier transform is
√

χ̃(ω) via the inversion formula

β(t) =
∫ ∞

−∞

√
χ̃ (ω) e−iωt dω

2π
.

A random potential which produces the desired behaviour of λn(ω) is then obtained by taking
the convolution of the function β(t) with a stochastic process η(t) with zero mean and delta-
shaped correlation function. In other words, one can consider the potential

U(t) =
∫ +∞

−∞
ds β(s)η(t + s),

where η(t) is a white noise with

〈η(t)〉 = 0 and 〈η(t)η(t + τ)〉 = δ(τ ).

Following this recipe, one can obtain for instance a random potential with the long-ranged
correlation function

χ(τ) = 1

τ
(sin ν1τ − sin ν2τ), (34)

which corresponds to the ‘window’ power spectrum

χ̃ (ω) =
{

1 if ν1 < ω < ν2

0 otherwise.

In such a case, one has that for the every frequency ωn that falls outside of the interval
[ν1/2 : ν2/2] the corresponding Lyapunov exponent λn vanishes (at least within the limits
of the second-order approximation considered here). By shifting the frequencies ν1 and
ν2, one can therefore obtain a delocalization transition as soon as the smallest Lyapunov
exponent vanishes; this corresponds to the electronic wavefunction having one extended
Fourier component. If more Lyapunov exponents vanish, the number of extended Fourier
components increases and the delocalization effect becomes more robust; in the extreme
case when all Lyapunov exponents vanish, the electronic wavefunction is not affected by the
random potential. If the phenomenon is considered from the point of view of the dynamical
system (19) one has that for every vanishing Lyapunov exponent there is an oscillator which
becomes stable energywise. When all the Laypunov exponents are zero, all the oscillators are
stabilized, i.e., the exponential divergence of the orbits is suppressed and the dynamics ceases
to be chaotic. The possibility of making selected Lyapunov exponents vanish entails that in
solid-state models the transmission properties can exhibit anomalous and unexpected features
of selective transparency, as happens for waveguides. We refer the reader to [21] for a detailed
discussion of this phenomenon.

5. Delocalization transition in quasi-1D models

In the previous section we have considered the special case in which the random potential
depends only on the longitudinal coordinate. The methods of section 3 can be applied also
to a potential of the general form U = U(x, y), but in this case it is usually impossible to
find the analytic solution P(J, t) of the Fokker–Planck equation (26) as well as to solve with
non-numerical methods the differential equation (29) for the average action variables. In fact,
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the dependence of the random potential on the transversal variable produces coupling of the
different oscillators, so that the coupling matrix (20) is no longer diagonal. As a consequence,
neither the diffusion matrix Dnk in the Fokker–Planck equation (26) nor the evolution matrix
Mnk in equation (29) are diagonal, and this makes exceedingly difficult to solve analytically
both equations.

One can, however, use a different technique to determine the sum of the positive
Lyapunov exponents, or Kolmogorov entropy. Setting the latter equal to zero then gives
a sufficient condition for delocalization of the electronic states of the quasi-1D model (5) and a
sufficient and necessary condition for the suppression of the orbit instability in the dynamical
system (19). In the following subsection we define the Kolmogorov entropy and we show how
it can be computed in the second-order approximation. The reader uninterested in technical
details may skip this subsection and the next, where a few special cases are analysed, and go
to subsection 5.3 where delocalization effects are discussed.

5.1. The Kolmogorov entropy

It is well known that in a Hamiltonian system with ν degrees of freedom there are 2ν

Lyapunov exponents which, due to the symplectic structure of the dynamical equations,
obey the symmetry relation

λi = −λ2ν−i+1

with i = 1, . . . , ν (see, for instance, [22]). Because of this relation, one has ν non-negative
Lyapunov exponents. For a deterministic Hamiltonian system, at least one of these exponents
vanishes; in the present case, however, the presence of a noisy term in the Hamiltonian (17)
ensures that, under normal circumstances, the non-negative exponents are actually positive.
The Lyapunov exponents are defined as the exponential rate of local divergence of initially
nearby trajectories; this definition, however, can be used operatively only to compute the
largest Lyapunov exponent. Lesser Lyapunov exponent can be determined using a technique
devised by Benettin et al [23]. The main idea is that the sum of the largest k exponents is
equal to the exponential rate of increase in time of the volume of a parallelepiped spanned by
k independent vectors (with k � ν). The result does not depend on the choice of the initial
vectors.

In the present case, we are interested in the sum of all the positive Lyapunov exponents;
for this reason we consider the volume of the parallelepiped spanned by ν = N + 1 linearly
independent vectors �ξ (0)(t), . . . , �ξ (N)(t). Such a volume can be expressed as the square root
of a Gram determinant:

V (ν)(t) =
√

|det G(t)|, (35)

where G is the (N + 1) × (N + 1) matrix with elements

Gij (t) = �ξ (i)(t) · �ξ (j)(t). (36)

The sum of the N + 1 positive Lyapunov exponents can then be written as

N∑
i=0

λi = lim
T →∞

〈
log

V (ν)(T )

V (ν)(0)

〉
. (37)

To apply this prescription to the dynamical system (19) it is convenient to introduce the
rescaled variables

xn = pn√
ωn

xN+1+n = √
ωnqn,
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with n = 0, . . . , N , so that the unperturbed motion of the nth oscillator reduces to a rotation
in the (xn, xN+1+n) plane.

In terms of the new variables, the dynamical equations (19) take the form

ẋn = −ωnxN+1+n +
N∑

k=0

εWnk(t)√
ωnωk

xN+1+k ẋN+1+n = ωnxn. (38)

The time evolution of the system can be expressed in terms of the evolution operator U(t),
defined by the relation


x0(t)

...

x2N+1(t)


 = U(t)




x0(0)

...

x2N+1(0)


 . (39)

Let us introduce the (2N + 2) × (2N + 2) matrices A and B, defined in block form as

A =
(

0 −Ω
Ω 0

)
and B(t) =

(
0 Ω−1/2W(t)Ω−1/2

0 0

)
,

where W(t) is the (N + 1) × (N + 1) matrix whose elements are defined by equation (20) and
Ω is the (N + 1) × (N + 1) diagonal matrix:

Ωnk = ωnδnk.

Writing the dynamical equations (38) in the matrix form and taking into account equation (39),
it is easy to see that the evolution operator is the solution of the matrix differential equation

U̇ = [A + εB(t)]U,

with the initial condition U(0) = 1. Going to the interaction representation, one can write the
evolution operator in the form

U(t) = eAtUI (t),

where the first factor is the unperturbed evolution operator,

eAt =
(

cos Ωt −sin Ωt

sin Ωt cos Ωt

)
,

while the second factor obeys the equation

U̇I = εBI (t)UI (40)

with

BI (t) = e−AtB(t) eAt .

For our purposes it is useful to write the evolution operator in block form:

U =
(

U(a) U(c)

U(b) U(d)

)
and UI =

(
U(a)

I U(c)
I

U(b)
I U(d)

I

)
.

This decomposition allows one to obtain from equation (40) the dynamical equations for the
left blocks of the evolution operator in interaction representation

U̇(a)
I = εWcs(t)U

(a)
I + εWcc(t)U

(b)
I

U̇(b)
I = −εWss(t)U

(a)
I − εWsc(t)U

(b)
I ,

(41)
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where we have introduced the new symbols

Wcc(t) = cos ΩtΩ−1/2W(t)Ω−1/2 cos Ωt

Wcs(t) = cos ΩtΩ−1/2W(t)Ω−1/2 sin Ωt

Wsc(t) = sin ΩtΩ−1/2W(t)Ω−1/2 cos Ωt

Wss(t) = sin ΩtΩ−1/2W(t)Ω−1/2 sin Ωt.

The identity UI (0) = 1 implies that equations (41) are to be solved with initial conditions

U(a)
I (0) = 1 and U(b)

I (0) = 0. (42)

We can now select as initial parallelepiped the (N + 1)-dimensional cube of edge � in the
space of rescaled momenta. In other words, we consider the set of initial vectors

�ξ (i)
k (0) = �δik,

where the index i (which identifies the independent vectors) runs from 0 to N, while the
index k (which labels the components of each vector) runs from 0 to 2N + 1. With this
choice of the initial vectors, and remembering that the evolved vectors can be written as
�ξ (i)(t) = U(t)�ξ (i)(0), one obtains that matrix (36) can be expressed in terms of the left blocks
of the evolution operator

G = [
U(a)T U(a) + U(b)T U(b)

]
�2 = [

U(a)
I

T
U(a)

I + U(b)
I

T
U(b)

I

]
�2,

(where the symbol MT denotes the transpose of the matrix M). Note that the matrix G has
the same form in the interaction representation and in the original representation. Inserting
this matrix in formula (35), one obtains the volume of the expanding parallelepiped; after
substituting this result in expression (37) one arrives at the conclusion that the sum of the
positive Lyapunov exponents can be written as

N∑
i=0

λi = lim
T →∞

1

2T

〈
log det

[
U(a)

I

T
(T )U(a)

I (T ) + U(b)
I

T
(T )U(b)

I (T )
]〉

= lim
T →∞

1

2T

∫ T

0
dt

〈
d

dt
log det

[
U(a)

I

T
(t)U(a)

I (t) + U(b)
I

T
(t)U(b)

I (t)
]〉

.

Using the fact that

d

dt
log det M = Tr(ṀM−1),

one can express the Kolmogorov entropy in the form

N∑
i=0

λi = lim
T →∞

1

2T

∫ T

0
dt
〈
ε Tr

{[
Wcs(t) + WT

cs(t)
]
Z1(t) − [

Wsc(t) + WT
sc(t)

]
Z2(t)

+
[
Wcc(t) − WT

ss(t)
]
Z3(t) +

[
WT

cc(t) − Wss(t)
]
ZT

3 (t)
}〉

, (43)

where we have introduced the operators

Z1 = U(a)
I

[
U(a)

I

T
U(a)

I + U(b)
I

T
U(b)

I

]−1
U(a)

I

T

Z2 = U(b)
I

[
U(a)

I

T
U(a)

I + U(b)
I

T
U(b)

I

]−1
U(b)

I

T

Z3 = U(b)
I

[
U(a)

I

T
U(a)

I + U(b)
I

T
U(b)

I

]−1
U(a)

I

T
.

(44)
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Taking into account the dynamical equations (41) for the blocks of the evolution operator,
it is easy to see that the operators (44) satisfy the differential equations

Ż1 = ε
[
WcsZ1 + Z1WT

cs + WccZ3 + ZT
3 WT

cc − Z1
(
Wcs + WT

cs

)
Z1

+ ZT
3

(
Wsc + WT

sc

)
Z3 − Z1

(
Wcc − WT

ss

)
Z3 − ZT

3

(
WT

cc − Wss

)
Z1
]

Ż2 = ε
[−WscZ2 − Z2WT

sc − WssZT
3 − Z3WT

ss + Z2
(
Wsc + WT

sc

)
Z2

− Z3
(
Wcs + WT

cs

)
ZT

3 − Z3
(
Wcc − WT

ss

)
Z2 − Z2

(
WT

cc − Wss

)
ZT

3

]
Ż3 = ε

[−WssZ1 − WscZ3 + Z3WT
cs + Z2WT

cc − Z3
(
Wcs + WT

cs

)
Z1

+ Z2
(
Wsc + WT

sc

)
Z3 − Z3

(
Wcc − WT

ss

)
Z3 − Z2

(
WT

cc − Wss

)
Z1
]
.

(45)

These equations determine the time evolution of the operators (44) together with the initial
conditions

Z1(0) = 1, Z2(0) = 0, Z3(0) = 0,

which can be obtained by substituting in definitions (44) the initial conditions (42) for the left
blocks of the evolution operator. The system of equations (45) can be solved perturbatively
by considering solutions of the form

Zi (t) =
∞∑

n=0

εnZ(n)
i (t).

Substituting these trial solutions into equation (45), one obtains the simple result

Z1(t) = 1 + o(ε) Z2(t) = o(ε) Z3(t) = −ε

∫ t

0
Wss(τ ) dτ + o(ε).

Putting these expressions in equation (43) one obtains that the sum of the positive Lyapunov
exponents is

N∑
i=0

λi =
N∑

n=0

N∑
k=0

ε2

8ωnωk

∫ ∞

0
{[〈Wkn(t)Wkn(t + τ)〉 + 〈Wnk(t)Wkn(t + τ)〉] cos(ωn + ωk)τ

+ [〈Wkn(t)Wkn(t + τ)〉 − 〈Wnk(t)Wkn(t + τ)〉] cos(ωn − ωk)τ } dτ + o(ε2).

(46)

This formula gives the sum of the positive Lyapunov exponents for the dynamical
system (19). Note that the result has been derived without considering any specific form of the
coupling matrix Wnk . Therefore it can be applied also to cases in which the coupling matrix
differs from the form (20). In particular, if one considers a symmetric matrix, Wnk = Wkn, the
second term in the rhs of equation (46) vanishes and the result reduces to the form obtained in
[15] for a similar problem. Here, however, the Wnk matrix is not fully symmetric, because of
the Kronecker delta in equation (20) which can be traced back to the fact that the zeroth Fourier
mode has no twin component unlike the other modes (which come in equal pairs Ũn = Ũ−n).
However, the second term in equation (46) can be neglected in the limit of a large number
of Fourier components, in which case the asymmetry linked to the zeroth channel becomes
negligible.

To analyse the physical implications of equation (46), it is useful to express the
Kolmogorov entropy in terms of the Fourier components of the random potential U.
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Substituting the matrix elements (20) in equation (46), one obtains
N∑

i=0

λi =
N∑

n=1

1

8ωnω0

∫ ∞

0
〈Ũn(t)Ũn(t + τ)〉[cos(ωn + ω0)τ + cos(ωn − ω0)τ ] dτ

+
N∑

n=−N

N∑
k=−N

1

8ωnωk

∫ ∞

0
[〈Ũn+k(t)Ũn+k(t + τ)〉 + 〈Ũn−k(t)Ũn+k(t + τ)〉]

× cos(ωn + ωk)τ dτ. (47)

Note that we have set the book-keeping parameter ε = 1, as we will do from now on,
with the tacit understanding that all results are valid within the second-order approximation.
Equation (47) represents the Kolmogorov entropy for any kind of random potential. We
observe that the second sum on the rhs of equation (47) contains a number of terms of order
O(N2) and therefore for N � 1 it is dominant with respect to the first sum which has only
O(N) terms. Hence if the number of oscillators/modes N is large, one can approximate the
Kolmogorov entropy (47) with

N∑
i=0

λi 	
N∑

n=−N

N∑
k=−N

1

8ωnωk

∫ ∞

0
[〈Ũn+k(t)Ũn+k(t + τ)〉 + 〈Ũn−k(t)Ũn+k(t + τ)〉]

× cos(ωn + ωk)τ dτ. (48)

We remember that the binary correlators which appear in equation (48) are the correlators of the
Fourier components (10) of the random potential. They are linked to the binary correlator (6)
via the double Fourier transform

〈Ũn(t)Ũk(t + τ)〉 = σ 2

4L2

∫ L

−L

dy

∫ L

−L

dy ′ χ(τ, y − y ′) cos
πny

L
cos

πky ′

L
. (49)

If the correlators (49) decay sufficiently fast as a function of the difference |n − k| of the
indices of the Fourier components of the potential, the second correlator in equation (48) gives
a marginal contribution with respect to the first one. Therefore one can replace expression (48)
with

N∑
i=0

λi 	
N∑

n=−N

N∑
k=−N

1

8ωnωk

∫ ∞

0
〈Ũn+k(t)Ũn+k(t + τ)〉 cos(ωn + ωk)τ dτ. (50)

5.2. Application to specific cases

We will now apply the general formulae derived in the previous subsection to a few particular
cases and see how one can recover known specific results from the general expressions (47)
and (50). Let us consider first the case of longitudinal disorder, i.e., of a random potential of
the form U(x, y) = U(x). In this case the only non-vanishing Fourier component (10) is the
zeroth one,

Ũn(t) = δn0U(t),

and the binary correlators (49) become

〈Ũn(t)Ũk(t + τ)〉 = σ 2χ(τ)δn0δk0. (51)

These correlators vanish unless n = k = 0, and therefore there is no doubt that they decay fast
for increasing values of |n− k|. Hence the approximate formula (50) can be applied; inserting
expression (51) in equation (50) one obtains

N∑
n=0

λn 	
N∑

n=0

σ 2

4ω2
n

∫ ∞

0
χ(τ) cos 2ωnτ dτ

(
1 − 1

2
δn0

)
. (52)



Delocalization effects in quasi-1D models with correlated disorder 11735

The exact result can be obtained by substituting the correlators (51) in equation (47); this
gives

N∑
n=0

λn =
N∑

n=0

σ 2

4ω2
n

∫ ∞

0
χ(τ) cos 2ωnτ dτ, (53)

and by comparing equation (52) with equation (53) we see that the difference between the
two expressions is indeed negligible in the large N limit. We remark that equation (53) is in
perfect agreement with what one obtains for the sum of the positive Lyapunov exponents (31)
derived in section 4. From the physical point of view, equation (53) is a natural consequence
of the fact that, as discussed in section 4, in the case of longitudinal disorder the Fourier
modes/oscillators are decoupled so that the quasi-1D model reduces to a sum of strictly 1D
systems.

As a special application of formula (53) one can consider the case of longitudinal white
noise. In this case χ(τ) = δ(τ ) and the Kolmogorov entropy (53) takes the form

N∑
n=0

λn =
N∑

n=0

σ 2

8ω2
n

in agreement with the well-known expression

λn = σ 2

8ω2
n

for the Lyapunov exponent of a noisy 1D oscillator of frequency ωn.
Equation (53) can be used also to derive the inverse localization length for a 1D model,

which can be seen as the limit case of a quasi-1D model when the transversal dimensions go
to zero, L → 0. In this limit the only elliptic Fourier component is the zeroth one and, indeed,
setting N = 0 in equation (53) one recovers the well-known expression (3) for the inverse
localization length in 1D models.

Let us now consider the case of a random potential which is a white noise in both the
longitudinal and the transversal directions. In this case the binary correlator (6) has the form

χ(x, y) = δ(x)δ(y),

and the correlators of the Fourier components (10) are

〈Ũn(t)Ũk(t + τ)〉 = σ 2

4L
δ(τ)(δn,k + δn,−k). (54)

The form of the correlators (54) implies that the second correlator in expression (48) gives
only a marginal contribution, so we can substitute equation (54) in formula (50). Neglecting
terms with O(N) addends, one obtains

N∑
i=0

λi 	 σ 2

16L

(
N∑

n=0

1

ωn

)2

. (55)

This equation coincides with the result obtained for a discrete model by Hansel and Luciani
in [14] if one identifies the width 2L of the doubled strip and the frequencies ωn in (55),
respectively, with the number of channels and the square roots of the energies in the model of
Hansel and Luciani.
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5.3. A sufficient condition for delocalization

The importance of equation (47) lies in the fact that it provides a criterion for the onset of a
delocalization transition in quasi-1D models. In fact, the condition

N∑
i=0

λi = 0 (56)

represents both a necessary and sufficient condition for the suppression of the orbit instability
in the system of parametric oscillators (19) and a sufficient condition for the localization
length to diverge. That condition (56) is not necessary for the delocalization of the electronic
states depends on the fact that, as discussed in section 2.6, the localization length is equal to
the smallest Lyapunov exponent. Therefore, delocalization sets in as soon as the minimum
Lyapunov exponent vanishes, even if larger Lyapunov exponents are non-zero. In contrast, in
the case of the dynamical system (19), unless all Lyapunov exponents vanish, initially nearby
orbits exponentially diverge.

The importance of expression (47) rests on the fact that it allows one to prove that, for
specific kinds of long-range correlated disorder, condition (56) is fulfilled over a certain range
of the electronic energy and, therefore, a continuum of extended states arises even in quasi-1D
models. The effect is analogous to that observed in strictly 1D models [2, 12]. To see how a
delocalization transition can occur, one can observe that the Kolmogorov entropy (47) vanishes
if the Fourier transforms in the longitudinal direction of the binary correlators (49) are zero,∫ ∞

0

〈
Ũn1(t)Ũn2(t + τ)

〉
cos ωτ dτ = 0, (57)

for all values of the indices n1 and n2 and for every frequency ω in the interval [0 : 2
√

E].
The frequency interval is determined by taking into account that the frequencies (15) vary in
the interval [0 :

√
E] and that formula (47) contains cosines with frequency up to twice the

maximum value of the frequencies ωn. Condition (57), however, is ensured by requiring that
the Fourier transform of the correlator (6)

χ̃ (ωx, ωy) =
∫ ∞

0
dx

∫ L

0
dy χ(x, y) cos ωxx cos ωyy (58)

should vanish for 0 � ωx � 2
√

E, i.e.,

χ̃ (ωx, ωy) = 0 for 0 � ωx � 2
√

E. (59)

A potential whose binary correlator satisfies this condition can be constructed with a slight
generalization of the method discussed in section 4 for the longitudinal disorder case. Starting
from a binary correlator (58) with arbitrary frequency dependence, one can obtain the function

β(x, y) =
∫ ∞

−∞

dωx

2π

∫ ∞

−∞

dωy

2π

√
χ̃(ωx, ωy) exp(−iωxx − iωyy).

The required potential can then be constructed via the convolution product

U(x, y) = σ 2
∫ ∞

−∞
dsx

∫ ∞

−∞
dsy β(sx, sy)η(sx + x, sy + y),

where η is a stochastic process with

〈η(x, y)〉 = 0 and 〈η(x, y)η(x ′, y ′)〉 = δ(x − x ′)δ(y − y ′).
Following this procedure, one can obtain a potential which fulfils the delocalization

condition (59). For example, one can consider a potential with long-range correlations in the
longitudinal direction of the form

χ(x, y) = 1

x
(sin ν1x − sin ν2x)γ (y), (60)
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where γ (y) is the correlation function in the transversal direction. The binary correlator (60)
is the simplest possible generalization of the correlator (34). Its power spectrum has the form

χ̃ (ωx, ωy) =
{

γ̃ (ωy) if ν1 < ωx < ν2

0 otherwise.

By selecting a potential such that ν1 = 2
√

E, one is ensured that the delocalization
condition (56) is fulfilled. We are thus led to the conclusion that a delocalization transition can
occur if the disorder exhibits long-range correlations that make the power spectrum vanish in
an appropriate frequency interval.

One should hasten to add that this conclusion is rigorously true only for weak disorder and
within the second-order approximation. In 1D models it has been shown that the delocalization
transition produced by long-range correlations of the disorder is a second-order effect and the
‘extended states’ are, in fact, electronic states which extend over a spatial range of order
O(1/σ 4) rather than O(1/σ 2) [13]. The same result can be expected for quasi-1D models;
this does not diminish the practical importance of the delocalization transition analysed here
because, for weak disorder, i.e., when σ 2 → 0, the increase of the spatial range of the
electronic wavefunction can be huge, being of order O(1/σ 2). For finite samples, therefore,
the delocalization can be real and manifest itself in a strong change of the transport properties
of the disordered sample.

6. Conclusions

In this work we have shown how the spatial structure of electronic states in a quantum quasi-
1D model with weak disorder can be analysed in terms of the time evolution of a classical
system of parametric oscillators with weak stochastic couplings. By Fourier transforming
the stationary Schrödinger equation for the quasi-1D model in the transversal directions, one
obtains a set of equations for the Fourier components of the electronic wavefunction that
can be mapped unto the dynamical equations of a Hamiltonian system of coupled oscillators.
The spatial behaviour of the Fourier components of the wavefunction is thus matched to the
time evolution of the oscillators, while the disorder in the quasi-1D model manifests itself as
noise in its dynamical analogue. The specific effect of the noise is to perturb the frequencies of
the oscillators and to couple the oscillators among themselves. Both models are characterized
by a set of characteristic Lyapunov exponents; however, whereas in the solid state model the
key Lyapunov exponent is the smallest one, which is equal to the inverse of the localization
length, in the dynamical system the most important exponent is the largest, which defines the
mean rate of exponential divergence of the orbits.

The dynamics of the Hamiltonian system can be analysed in full detail when the random
potential in the quasi-1D model depends only on the longitudinal coordinate. In this case the
oscillators are effectively decoupled and it is possible to obtain the whole Lyapunov spectrum
of the system. One can thus make a complete study of the delocalization effects produced by
specific long-range correlation of the disorder.

The general case of a random potential which depends both on longitudinal and transversal
coordinates is more difficult to handle; nevertheless, it is still possible to evaluate perturbatively
the sum of the positive Lyapunov exponents (or Kolmogorov entropy). Using this result, one
can show that specific kinds of long-range correlated disorder make all Lyapunov exponents
vanish within the second-order approximation and therefore produce a delocalization transition
in quasi-1D models like they do in strictly 1D models.
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